If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-15t-15=0
a = 4.9; b = -15; c = -15;
Δ = b2-4ac
Δ = -152-4·4.9·(-15)
Δ = 519
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{519}}{2*4.9}=\frac{15-\sqrt{519}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{519}}{2*4.9}=\frac{15+\sqrt{519}}{9.8} $
| -1(5+x)=13 | | 133.3-x=0.2x | | x+112=478 | | 7y-3y-13=48.56. | | 2x-7-(x+12)=0 | | 0.9m=0.8m+75 | | 45b+45=27b+9 | | 3x-18=69 | | 36.5-x=24.5 | | 7(x+4=36 | | |2t+7|=15 | | 10=22-8x | | 9.6y-16.4=-4.3+26.3 | | 5s-3=17 | | 3x÷7(x+1)=2(6x+5)-2x | | 6x+40=(x+5)-2x | | 8y-6y-7=16.16 | | 7b/12+3b/(4)=b/(3)+9 | | +2(-w+3)=15 | | -4(r+5)=-71 | | 4t-12=-2t+24 | | -7+11y+5=2y+31 | | 19=-5-3a-11 | | 9y-6y-5=50.38 | | 5-8x=4x-24 | | 4d+1/7=12(1/3d+2) | | 3x-26=64 | | 6u-30=2(u-3) | | -2x5=3x-3 | | 3(w-5)-6w=6 | | 3(x+2)+2x=7 | | -5x+120=6x+-1 |